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Abstract
Aim: In this study, it was aimed to determine the reduced Glutathione (GSH) at the modified sensor with a simple and reliable electroanalytical method. Mate-

rial and Method: Cyclic voltammetry and differential pulse voltammetry techniques were used for the determination of reduced-GSH. And the modified sensor 

was fabricated by dropping single-walled carbon nanotube (SWCNT) dispersion onto the surface of the glassy carbon electrode. Results: The determination 

of reduced-GSH was accomplished at SWCNT modified sensor. The relationship between the current responses of the sensor and the concentrations of the 

reduced-GSH (1.0 x 10-8 - 5.0 x 10-8 M) showed excellent linearity and the detection limit was calculated as 75 nM. Discussion: Determination of trace amounts 

of reduced-GSH in urine samples was successfully applied at the modified sensor. The results showed that modification of the glassy carbon electrode with 

SWCNT could provide a new strategy for determining the concentration of GSH in physiological solutions.
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Introduction
Glutathione (GSH) is the most abundant intracellular thiol with 
the concentration in the millimolar range (1–10 mM) [1-3]. GSH 
plays a very important role in regulating various physiological 
and pathological processes [1,4]. It has been reported that GSH 
serves many cellular functions, including xenobiotic metabo-
lism, intracellular signal transduction, and gene regulation [3].  
In addition, the intracellular redox activity of GSH continues 
with its antioxidant properties[5, 6]. Abnormal levels of GSH 
can lead to diabetes mellitus, Alzheimer’s disease, atheroscle-
rosis and other diseases [6-8]. More importantly, changes in the 
concentration of GSH in biological tissues are used as a marker 
for certain disorders [4]. In view of the important biological and 
clinical significance for GSH, it has thus spurred strong inter-
est in developing useful chemical materials for quantitatively 
evaluating the level of intracellular GSH [4,8]. 
Glutathione is a tripeptide which can be synthesized in the liver 
using no genetic information [9-12]. It is a major antioxidant 
which protects cells from oxidative damage by reacting with 
free radicals and peroxides [7,9,10]. Glutathione exists in tis-
sues in two different types which stay in balance in tissues: 
reduced GSH and oxidized glutathione (GSSG) [13-15]. In the 
physiological process of GSH, the conversion to GSSG occurs 
by the glutathione peroxidase enzyme with selenium. Oxidized 
glutathione reduces the oxidized form of GSH by an NADPH-
dependent flavoenzyme GSH reductase [15]. It is important to 
detect GSH using a reliable method with good sensitivity and 
selectivity. Due to its electrochemically oxidizable property [16, 
17], it has become important to develop an effective electro-
chemical sensor for the determination of GSH. For this reason, 
a simple and reliable electroanalytical method and a sensor 
modified with single-walled carbon nanotube (SWCNT) were 
developed to determine the reduced-GSH. To the best knowl-
edge of this work, this is the first study of the determination of 
GSH at SWCNT modified sensor in the literature.

Material and Method 
Reagents and Apparatus
Reduced GSH was purchased from Merck, and N, N-dimeth-
ylformamide (DMF) was from Sigma. Single-walled Carbon 
Nanotube (SWCNT) (diameter: <2 nm, EC: >100 S/cm, length: 
5-30 µm, purity >95%, surface area: 380 m2g-1) was supplied 
from © Grafen Inc. Stock GSH solutions were freshly prepared 
in ultra-pure water for daily. Na2HPO4, KH2PO4 (Carlo Erba), KCl 
(Merck) and NaCl (Merck) were dissolved for 0.10 M phosphate 
buffer solution (PBS). Milli Q (Millipore, 18.2 MΩ.cm) ultra-pure 
water was used during the preparation of solutions.
All the electrochemical operations (Cyclic voltammetry (CV) and 
Differential pulse voltammetry (DPV) were carried out by a BAS 
(Bioanalytical Systems, Inc.) 100 W electrochemical analyzer. 
The three electrode system was used consisting of a glassy car-
bon working electrode (GCE) (geometric area: 6.85 mm2, CHI), 
an Ag/AgCl reference electrode (CHI112) and a Pt disc auxiliary 
electrode (CHI). The pH was measured with a Jenway 3010 pH 
meter.

Measurement of GSH in urine samples 
Urine samples were diluted 10 times with 0.1 M PBS (pH 7.4) 

without any additional pretreatment. After that, 100, 200 and 
300 µM of reduced GSH added to 10 mL of this solution in an 
electrochemical cell for electroanalytical measurements. Three 
multi-run DPV measurements were performed in these samples 
prepared with three replicates at the modified sensor. The 
standard addition method was applied to the urine samples by 
spiking of reduced GSH. 

Preparation of Modified Sensors
SWCNT dispersions were prepared with N,N-dimethylfor-
mamide (DMF) solution at the concentration of 1.0% (mg/µL). 
SWCNT/DMF dispersions were sonicated for 4 h before drip-
ping onto the GCE surface. Modification of GCEs was carried 
out by dripping of 10 µL of SWCNT dispersions on the surface 
of bare GCE. And then SWCNT/GCE modified sensor was dried 
overnight.

Results
Electroanalytical determination of 10 µM reduced GSH was 
done in PBS (pH 7.4) at SWCNT/GCE modified sensor with DPV 
and CV techniques (Figure 1). In order to obtain a calibration 
graph, the solutions of reduced GSH were analyzed by the DPV 
technique at SWCNT/GCE modified sensor. The concentrations 
of reduced GSH were changed from 1 x 10-8 M to 5 x 10-8 M. The 
calibration curve was generated by plotting the current values 
against the concentrations (Figure 2). The results showed that 
the anodic peak currents of GSH were linear at the concentra-
tion range of 0.01 µM to 0.05 µM. The calibration equation was 
Ipa (µA) = 0.0956C (µM) + - 0.0166 with correlation coefficients 
(R2) as 0.9909. Excellent correlation was found between the 
concentrations of GSH and peak current densities.
Validation parameters were shown in Table 1. The sensitivity 
and the detection limit (LOD) of GSH were found from the slope 
of the calibration curve. The limit of detection (s/m = 3), where 
s is the standard deviation of the peak currents (for five runs) 

Figure 1. (A) CVs of GSH and (B) DPVs of GSH in PBS (pH 7.4) at (a) SWCNT/GCE 
modified sensor and (B) bare GCE vs. Ag/AgCl.

Figure 2. (A) DPVs of increasing concentrations of GSH (1 x 10-8 - 5 x 10-8 M) in 
PBS (pH 7.4) at SWCNT/GCE modified sensor (B) Calibration plot of GSH obtained 
from DPV results.
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and m is the slope of the calibration curve, was 0.75 nM and the 
sensitivity was 0.0956 µA/µM. Three replicate solutions of urine 
samples containing reduced GSH were analyzed using the DPV 
technique at SWCNT/GCE modified sensor. GSH concentra-
tions in real samples were calculated from the calibration curve 
equation by using the obtained current values. The recovery 
values obtained from the GSH analysis in real samples showed 
the accuracy and reproducibility of the sensor in Table 2. The 
proposed method was satisfactorily performed to real samples.

Discussion
The effect of supporting electrolyte and pH, which are one of 
the parameters that can affect the voltammetric behavior of 
GSH, play an important role. Selecting a suitable support elec-
trolyte creates a conductive medium for sensing the analyte 
in the solution medium to be analyzed and the sensitivity of 
the sensor increases. The choice of support electrolyte and pH 
depend on its resolution, dissociation degree, and nucleophilic 
character [18,19]. For this purpose, the DPV responses of GSH 
were investigated in PBS at pH 5.0 – 8.0. There was an increase 
in peak currents up to pH 7.4, but a decrease in peak currents 
after pH 7.4. It was found that the anodic peak potential of 
GSH shifted negatively with the increase of pH value, and the 
anodic peak current decreased due to the participation of two 
protons in the oxidation process [20, 21]. Consequently, subse-
quent electroanalytical studies were performed at PBS pH 7.4 
as the supporting electrolyte medium. Furthermore, the maxi-
mum response at pH 7.4, which is physiological pH, is promising 
in terms of working with real samples.
The electrochemical determination of GSH was studied at GCE 
modified with SWCNT and bare GCE by CV and DPV method. 
The oxidation peak current of DPV response was selected as 
the analytical signal of GSH. The amperometric sensor dis-
played excellent electrochemical performance to the oxidation 
of reduced GSH. The GSH oxidized and reduced at SWCNT/GCE 
modified sensor by CV techniques at potentials of nearly 247 

mV and 177 mV, respectively. GCE could not show any reduc-
tion/oxidation peak at bare GCE. GSH oxidized at nearly 212 
mV (3.198 µA) by DPV method. The quantification of GSH was 
successfully achieved with these techniques.
The five successive tests at the same SWCNT/GCE modified 
sensor and different modified sensors imparted almost the 
same electroanalytical response with the recoveries of 99.12% 
and 98.65%, respectively. These results demonstrated that 
SWCNT/GCE modified sensor has excellent reproducibility and 
repeatability. Furthermore, ten cycles of the GSH oxidation cur-
rents at the SWCNT/GCE modified sensor was exhibited great 
stabilization by 0.024% RSD. Additionally, very low concentra-
tions of GSH were perfectly determined at the modified sensor 
and a very low detection limit, such as 0.75 nM, was obtained. 
In order to determine the analytical applicability and accuracy 
of the modified sensor, urine samples were analyzed using SW-
CNT modified sensor.  The satisfactory recovery values showed 
that the proposed sensor could be easily used to identify GSH 
in physiological fluids.
Several studies have shown the quantification of GSH at dif-
ferent modified sensors. However, the voltammetric response 
properties obtained in this work (including linear range and de-
tection limit) are better than similar studies from the literature 
[1,3,5,8,22-32]. As a result, of a comparison between voltam-
metric response properties of the various modified electrode 
and proposed modified sensor, higher detection limit values 
are obtained at the corresponding sensors. This proved that the 
sensor used in this study could detect lower GSH quantities.

Conclusion
GSH does not present well-known redox response at the bare 
glassy carbon electrode.  Surface modification of the electrode 
with SWCNT allows analyzing the alteration of the sensor 
electrochemical response. Voltammetric studies of GSH at the 
surface of the modified electrode have shown adsorption-like 
behavior in which, the GSH is linked to the composite. Determi-
nation of very low concentrations of GSH in physiological liq-
uids was achieved by the electroanalytical method at the modi-
fied sensor with high recovery values. The results suggested 
that the SWCNT modification of electrodes may provide a new 
strategy for GSH concentration determination in physiological 
solutions. Therefore, the modified sensor can be promising to 
be used in routine analyses.
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Table 1. Regression Data of the Calibration Line for Quantitative 
Determination of GSH in PBS at modified sensor by DPV Technique

Parameters  Results

Equation of calibration plot I  (µA) = 0.0956 C(µM) - 0.0166

Measured potential (mV) 210

Linear concentration range (M) 1.0 x 10-8 - 5.0 x 10-8

Slope (µA. µM-1) 0.0956

Intercept (µA) 0.0166

Correlation coefficient 0.9909

Limit of Detection (µM) 0.75

Limit of Quantification (µM) 2.5

Table 2. Analytical results obtained by spiking the GSH to urine sample at 
modified sensor

Spiked, µM Found, µM 
(mean±SD)

Recovery, % RSD*, %

100 99.03 ± 0.73 99.03 0.737

200 198.72 ± 0.86 99.36 0.433

300 298.84 ± 0.95 99.61 0.318

* RSD: Relative standard deviation
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